Algorithm XXX: SHEPPACK: Modified Shepard Algorithm for Interpolation of Scattered Multivariate Data

نویسندگان

  • WILLIAM I. THACKER
  • JINGWEI ZHANG
  • LAYNE T. WATSON
  • JEFFREY B. BIRCH
  • MANJULA A. IYER
چکیده

Scattered data interpolation problems arise in many applications. Shepard’s method for constructing a global interpolant by blending local interpolants using local-support weight functions usually creates reasonable approximations. SHEPPACK is a Fortran 95 package containing five versions of the modified Shepard algorithm: quadratic (Fortran 95 translations of Algorithms 660, 661, and 798), cubic (Fortran 95 translation of Algorithm 791), and linear variations of the original Shepard algorithm. An option to the linear Shepard code is a statistically robust fit, intended to be used when the data is known to contain outliers. SHEPPACK also includes a hybrid robust piecewise linear estimation algorithm RIPPLE (residual initiated polynomial-time piecewise linear estimation) intended for data from piecewise linear functions in arbitrary dimension m. The main goal of SHEPPACK is to provide users with a single consistent package containing most existing polynomial variations of Shepard’s algorithm. The algorithms target data of different dimensions. The linear Shepard algorithm, robust linear Shepard algorithm, and RIPPLE are the only algorithms in the package that are applicable to arbitrary dimensional data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume Morphing Methods for Landmark Based 3d Image Deformation

Volume morphing is a technique used for generating smooth 3D image transformations and deformations. In this paper, several algorithms are developed for morphing transformations that create new forms and simulate shape deformation and growth in biomedical applications. 3D biological point landmarks and their movements are deened to guide the morphing transformation using a scattered data interp...

متن کامل

Interpolation of Scattered Data: Investigating Alternatives for the Modified Shepard Method

Many scientific applications use scattered data originated from samples. Interpolation techniques are necessary to estimate the values on non-sampled regions. In a previous work, the Modified Shepard interpolation method was implemented and some unpredictable results occurred. Due to the flexibility of parameter definition for the interpolant generation in this method we decided to investigate ...

متن کامل

Constrained Shepard Method for Modeling and Visualization of Scattered Data

The problem of modeling and visualization of scattered data where there are inherent constraints on value of the data exists in many scientific and business research areas. For example, the value of mass concentration always has the lower bound of 0 and upper bound of 1. The modeling functions having gradient continuity usually do not guarantee to preserve the bounds of data. In this paper we p...

متن کامل

Thinning algorithms for scattered data interpolation

Multistep interpolation of scattered data by compactly supported radial basis functions requires hierarchical subsets of the data. This paper analyzes thinning algorithms for generating evenly distributed subsets of scattered data in a given domain in IR. AMS subject classification: 41A15, 65D05, 65D07.

متن کامل

Interpolation of Lipschitz functions

This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning of f. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009